Speaker
Description
Rydberg Atoms in highly excited electronic states with n=30-200 can be excited within Bose-Einstein condensates (BECs), and while lifetimes are shorter than in vacuum [1,2], these atoms live long enough to cause a response of the BEC mean field [3]. During this, thousands of ground-state atoms are present within the Rydberg orbit, allowing the study of atoms moving within atoms [4].
We present beyond-mean field models of the joint Rydberg-BEC dynamics, showing how either can be used to probe the other.
For multiple Rydberg atoms in a single electronic state, we show that the phase coherence of the condensate allows the tracking of mobile Rydberg impurities akin to the function of bubble-chambers in particle physics [5]. For a single Rydberg atom with multiple electronic states, we provide spectral densities of the BEC as a decohering environment [6], and show that the BEC can image a signature of the entangling evolution that causes Rydberg q-bit decoherence [7] or serve as non-Markovian environment for quantum simulations.
[1] Schlagmüller et al. PRX 6 (2016) 031020.
[2] Kanungo et al. PRA 102 (2020) 063317.
[3] Balewski et al. Nature 502 (2013) 664.
[4] Tiwari et al. arXiv:2111.05031 (2021).
[5] Tiwari et al. PRA 99 (2019) 043616.
[6] Rammohan et al. PRA 103 (2021) 063307.
[7] Rammohan et al. PRA(Letters) 104 (2021) L060202.
Presenter name | Sebastian Wuster |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |