Speaker
Description
The influence of inhomogeneous electric fields in ion clouds on high-angular-momentum Rydberg states is investigated. The fields follow from a superposition of macroscopic and random microscopic (Holtsmark) fields. The ion clouds are induced experimentally by photo-ionizing cold rubidium atoms in the $5D_{3/2}$ state near the focal spot of a near-concentric 1064-nm intracavity optical lattice. We observe how the $n=57$ $F$-state mixes with the neighboring hydrogenic manifold and study evolution of spectroscopic features, such as line broadening and excitation-strength distribution for different numbers of created ions. Pump-probe experiments are performed to study the dynamics of the ion-Rydberg-atom system. Our data is utilized to evaluate the experimental feasibility of inhomogeneous-electric-field sensing with subsequent determination of the ion density. Additional experiments with Rydberg $P$-states are reported as well. Our results might be of interest for future studies of electric fields in non-neutral plasmas and in hybrid cold-atom-ion systems.
Presenter name | Alisher Duspayev |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |