Description
Optical-tweezer arrays are a powerful platform for realising analog and digital quantum simulators. However, they share the scalability problem common to all quantum hardware. Here, we present a new experimental setup that integrates the tweezer technology in a cryogenic environment. At 4K, we are able to measure a vacuum-limited lifetime of more than 6000 seconds, which represents a two-order-of-magnitude improvement over room temperature setups [1]. In addition, we have implemented an optimised trap loading equalisation procedure that, in combination with the extended lifetime, allows us to build arrays with more than 300 atoms while maintaining high accuracy of defect-free realisations.
These results are the first step towards Rydberg quantum simulators with more than a thousand particles.
[1] Kai-Niklas Schymik, Sara Pancaldi, Florence Nogrette, Daniel Barredo, Julien Paris, Antoine Browaeys, and Thierry Lahaye, Single Atoms with 6000-Second Trapping Lifetimes in Optical-Tweezer Arrays at Cryogenic Temperatures, Phys. Rev. Applied 16, 034013 (2021)
Presenter name | Davide Dreon |
---|