Description
In this poster, we report a quantum gas microscope of Lithium-7 atoms in a two-dimensional (2D) square lattice. Individual atoms in each lattice site are imaged by Raman sideband cooling in a hybrid potential of the 2D lattice and a single tightly focused optical sheet potential. With a high numerical aperture (NA=0.65) objective, we achieve a point spread function of 630nm (full width half maximum), which is small enough to resolve the lattice spacing (752nm). About 4000 photons were collected during 1s of exposure time with a detection fidelity of 98%. Using the magnetic Feshbach resonance, we produce a large-sized unity filling Mott insulator with 1500 atoms at low temperature. We engineer our potential on a single-site level with an optical potential generated by a digital micromirror device (DMD), which opens opportunities to further cool the temperature and explore many-body localized (MBL) phases.
Presenter name | Kiryang Kwon |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |