Description
Inertial sensors based on matter-wave interference show great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity to rotations increases with the space-time area enclosed by the interferometer. In the case of light interferometers, the latter can be enlarged by forming multiple fibre loops. However, the equivalent for matter-wave interferometers remains an experimental challenge. This contribution presents a concept for a multi-loop atom interferometer with a scalable area formed by multiple light pulses. It exploits ultra-cold atomic ensembles combined with symmetric beam splitting and a relaunch mechanism. Due to its scalability it offers the perspective of reaching unprecedented sensitivities for rotations in compact sensor head setups.
Funded/supported by the DFG, ID 274200144 SFB 1227 DQ-mat within B07 & B09, & ID 434617780–SFB 1464 TerraQ within A01, A02 & A03 & EXC-2123 QuantumFrontiers, ID 390837967; by the DLR by the BMWi under DLR 50WM1952 & 50WM1955 (QUANTUS-V-Fallturm), 50WP1700 (BECCAL), 50RK1957 (QGyro), DLR 50NA2106 (QGyro+) & the VDI by the BMBF under VDI 13N14838 (TAIOL); by the BMBF under 13N14875 and from “Niedersächsisches Vorab” for the initial funding of the DLR-SI Institute and through QUANOMET (QT3).
Presenter name | Sven Abend |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |