Description
Ultracold quantum gases of atoms or molecules have become an outstanding tool to create and study various quantum many-body systems. Thanks to their high degree of controllability, they can be considered as quantum simulators - special purpose analog quantum computers - to address specific problems. An important example is optical lattice systems, which enable the implementation of the Hubbard model and can be probed with single-site and single-atom resolution in quantum gas microscope experiments.
In our experiment at ICFO, Barcelona, we aim at the realization of an ultracold strontium quantum gas microscope and pursue several research directions. Particularly, the subwavelength spacing of an optical lattice together with the two-level system of strontium will present an ideal environment to study the collective effects of atom-photon scattering. Additionally, the large nuclear spin of the fermionic isotope will enable access to rich physics of SU(N≤10) Fermi-Hubbard systems. A high-NA imaging system will provide single lattice site resolution, whereas spin-dependent shelving in the clock state will offer spin-resolved imaging. In my poster, I give an overview of our new machine for ultracold strontium and discuss the further steps.
Presenter name | Vasiliy Makhalov |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |