Description
The most challenging problems from materials science and quantum chemistry involve strongly correlated states of mobile fermions. Mapping such itinerant systems to effective spin-1/2 systems realized on most quantum computing prototypes comes with a large computational overhead. New types of quantum processors based on inherently fermionic computation are therefore needed.
FermiQP will deliver a quantum processor based on ultracold fermionic Lithium operable in two modes. The analogue quantum gas microscopy mode will be using the fermionic nature of Lithium 6 to perform large-scale simulations of the Fermi-Hubbard model. The digital mode will enable quantum computation using spins manipulated by laser-driven single-qubit and superlattice-based global two-qubit gates allowing for universal programming. The device will thus enable new hybrid quantum computation schemes, where digital gate sequences are used for the initialization and readout of inherently fermionic analog quantum simulations. I will present the plans for and the current status of the FermiQP demonstrator.
Presenter name | Philipp Preiss |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |