Description
Spin-polarized Fermi gases in low dimensions offer a pathway to the quantum simulation of matter. Through a Feshbach mechanism the p-wave ($L=1$) interactions governing these systems, which are suppressed by a centrifugal barrier at low energy, may be tuned and enhanced by a magnetic field. In doing so one may realize phenomena as diverse as chiral superfluidity in two dimensions to topological qubits in the form of Majorana fermions in a Kitaev chain in one dimension. We study the short-range correlations between atoms in an ensemble of quasi-one-dimensional (quasi-1D) tubes of fermionic potassium realized with a two-dimensional optical lattice. The p-wave contact in 1D is measured for the first time through few-body correlations that manifest in the high-momentum tail of radio-frequency spectroscopy. By varying magnetic field and lattice depth we observe that the odd-wave resonance is shifted by confinement, energetically narrow, and limited from reaching unitarity by loss. In a greater field range, we observe additional features due to orbital singlet collisional states facilitated by population in transverse excited bands. Such states are exchange anti-symmetric in the transverse confinement direction, resulting in axial even-wave character that exhibits broad energetic width and orders of magnitude larger correlation strength than the odd-wave case. These emergent even-wave collisions open new possibilities for strongly interacting p-wave systems and quantum simulation in low dimensions.
Presenter name | Kevin G. S. Xie |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |