Description
The quantum simulation of Fermi-Hubbard models using ultracold atoms in optical lattices has been essential to deepen our understanding of condensed matter systems. With the precise tunability of the model parameters and the possibility to even change the dimensionality of the systems, it allows to investigate many-body quantum phases. In particular, probing spin correlations has been of interest in understanding high-temperature superconductivity.
Our experimental setup is based on a three-dimensional optical lattice where a vertical lattice confines the atoms in two-dimensional layers. Recently, the vertical lattice has been extended to a superlattice to implement pairs of layers coupled by interlayer tunneling. To introduce the superlattice capabilities to the two-dimensional layers, we are currently working on the implementation and stabilization of an in-plane superlattice. In the future, we are going to investigate topological systems and transport properties in time-dependent superlattices.
Presenter name | Janek Fleper |
---|---|
online poster URL | https://uni-bonn.sciebo.de/s/VXDWZpq4AmSqqz5 |
How will you attend ICAP-27? | I am planning on in-person attendance |