Description
The mass tests of equivalence principle (EP) with atoms have been performed using ^[85]Rb-^[87]Rb, ^[87]Rb-^[39]K, and ^[88}Sr-^[87}Sr atom pairs [1–7]. Beyond-mass tests have been investigated using different quantum properties, including quantum statistics [8], spin [9,10], superposition [11], and internal energy [1,10,11]. An entanglement test [12] was also proposed. All of these quantum tests use either a mass pair in a certain internal state or a state pair in a single mass. A joint test of two attributes, such as mass and internal energy, would provide more information than the single attribute test. However, such two-parameter test experiments are usually not easy because we need to specify and fix the attributes during the experiment.
Here, we use rubidium isotope atoms with specified mass and internal energy to carry out a joint mass-energy test of the EP. We correct the Coriolis error by compensating the rotation of Raman laser’s mirror [13], improve the four-wave double-diffraction Raman transition method (4WDR) we proposed before to select atoms with a certain mass and angular momentum state, and form a dual-species atom interferometer. By using the extended 4WDR to ^[85]Rb and ^87[Rb] atoms with different angular momenta, we measure their differential gravitational acceleration, and we determine the value of the Eötvös parameter, η, which measures the strength of the violation of EP [14]. The Eötvös parameters of the four paired combinations ^[85]Rb |F=2>-^[87]Rb|F=1>, ^[85]Rb|F=2>-^[87]Rb|F=2>, ^[85]Rb|F=3>-^[87}Rb|F=1>, and ^[85]Rb|F=3>-^87[Rb]|F=2> were measured to be η1 = (1.5 ± 3.2) × 10^[−10], η2 = (−0.6 ± 3.7) × 10^[−10], η3 = (−2.5 ± 4.1) × 10^[−10], and η4 = (−2.7 ± 3.6) × 10^[−10], respectively. The violation parameter of mass is constrained to η0 = (−0.8 ± 1.4) × 10^[−10], and that of internal energy to ηE = (0.0 ± 0.4) × 10^[−10] per reduced energy ratio a (a = hν0/mc^[2], and ν0 = 1 GHz). This work opens a door for joint tests of two attributes beyond the traditional pure mass or energy tests of EP with quantum systems.
References
[1] S. Fray, C. A. Diez, T. W. Hänsch, and M. Weitz, Phys. Rev. Lett. 93, 240404 (2004).
[2] A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, Phys. Rev. A 88, 043615 (2013).
[3] D. Schlippert, J. Hartwig, H. Albers, et al., Phys. Rev. Lett. 112, 203002 (2014).
[4] L. Zhou, S. T. Long, B. Tang, et al., Phys. Rev. Lett. 115, 013004 (2015).
[5] B. Barrett, L. Antoni-Micollier, L. Chichet, et al., Nat. Commun. 7, 13786(2016).
[6] H. Albers, A. Herbst, L. L. Richardson, et al., Eur. Phys. J. D 74, 145 (2020).
[7] P. Asenbaum, C. Overstreet, M. Kim, et al., Phys. Rev. Lett. 125, 191101 (2020).
[8] M. G. Tarallo, T. Mazzoni, N. Poli, et al., Phys. Rev. Lett. 113, 023005(2014).
[9] X. C. Duan, M. K. Zhou, X. B. Deng, et al., Phys. Rev. Lett. 117, 23001 (2016).
[10] K. Zhang, M. K. Zhou, Y. Cheng, et al., Chin. Phys. Lett. 37, 043701 (2020).
[11] G. Rosi, G. D’Amico, L. Cacciapuoti, et al., Nat. Commun. 8, 15529(2017).
[12] R. Geiger and M. Trupke, Phys. Rev. Lett. 120, 043602 (2018).
[13] W. T. Duan, C. He, S. T. Yan, et al., Chin. Phys. B 29, 070305 (2020).
[14] L. Zhou, C. He, S. T. Yan, et al., Phys. Rev. A 104, 022822 (2021).
Presenter name | Jin Wang |
---|---|
online poster URL | http://cap.apm.ac.cn/c/document_library/get_file?uuid=069854ff-8d6e-4105-bd62-55c67b8231fa&groupId=17322 |
How will you attend ICAP-27? | I am planning on virtual registration for online attendance |