Description
Recently, the formation of heteronuclear quantum droplets has been observed in an attractive bosonic mixture of $^{41}$K and $^{41}$Rb. [1], with increased lifetimes with respect to the homonuclear mixture of $^{39}$K. In order to enable fruitful comparison with experiments, we have performed a study of the $^{41}$K and $^{41}$Rb mixture using the diffusion Monte Carlo method and the Density Functional Theory [2].
We have proved that the perturbative Lee-Huang-Yang term for a heterogeneous mixture is valid only near the gas-liquid transition. Based on the equations of state of the bulk mixture, calculated with diffusion Monte Carlo, we present extensions to Lee-Huang-Yang corrected mean-field energy functionals.
Using Density Functional Theory, a systematic comparison between different functionals is performed, focusing on the critical atom number, surface tension, surface width, Tolman length, and compressibility. These results are given as a function of the inter-species interaction strength, within the stability domain of the liquid mixture and for an experimentally relevant range of scattering parameters.
[1] C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich,F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observation of quantum droplets in a heteronuclear bosonic mixture, Phys. Rev. Research 1, 033155 (2019).
[2] V. Cikojević, E. Poli, F. Ancilotto, L. Vranješ Markić, J. Boronat, Dilute quantum liquid in a K-Rb Bose mixture, Phys. Rev. A, 104, 033319 (2021).
Presenter name | Leandra Vranjes Markic |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |