Description
Trapped-ion systems are amongst the most promising approaches for realizing useful quantum computers and simulators. However, scaling up the qubit register size without compromising performance remains challenging. In the experimental setup presented here we work on realizing large registers of trapped barium-ion qubits.
Barium-ion qubits offer several features favourable for quantum computation experiments. Among these features are optical transitions in the visible range as well as long-lived metastable states which allow for mixed qubit registers that enable novel qubit control schemes like mid-circuit or partial projective measurements and in-sequence cooling. We show an all-fiber Raman system consisting of low-noise 532 nm lasers, standard fiber modulators, and a custom laser-written waveguide beam delivery system capable of single-ion addressing. We confine the ions in a segmented monolithic 3D microfabricated trap [1] that allows for advanced trapping potential control while simultaneously providing a low heating rate.
Odd barium isotopes additionally offer a range of magnetically insensitive “clock”-states in the ground and metastable states. Amongst them, the radioactive isotope $^{133}$Ba$^+$, with a nuclear spin of $I = 1/2$, has the simplest level structure [2]. While its lifetime of 10.51 years is not problematic for its use as qubit, radiation safety considerations require sample sizes of only a few micrograms, too little for conventional oven loading schemes. Here we present our work towards fabricating BaCl$_2$ targets that are suitable for ablation loading.
[1] P. See, et al., Journal of Microelectromechanical Systems 22, (2013)
[2] J. E. Christensen, et al., npj Quantum Information 6, (2020)
Presenter name | Fabian Pokorny |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |