Description
The development of novel quantum technologies ultimately depends on the ability to generate non-classical states. In this regard, the so-called "NOON states" - "all or nothing" superpositions - have been shown to enable interferometry at the "Heisenberg sensitivity" (with a scaling that is limited by nature itself). Much effort has been made to generate such states on several platforms, with the main limitation being the number of occupied modes in each subspace. Here, we propose the use of integrability to circumvent this issue. Considering a system of interacting dipolar atoms hopping along the edges of a square plaquette, we introduce two different protocols for the generation of NOON states with scalable mode occupation. An experimental realization based on optical superlattices is proposed, which would allow for the realization of the integrable regime in the system.
Presenter name | Daniel Schneider Grun |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |