Description
Ultracold molecules are a powerful platform for metrology, precision measurements and searches for new, beyond-the-Standard-Model physics. In particular, Sr$_2$, thanks to its simple structure, insensitivity to external fields and narrow optical transitions, provides an excellent testbed for the search for new interactions. Here, we present a detailed characterisation of our $^{88}$Sr$_2$ molecular clock for a vibrational transition spanning the entire depth of the ground state potential. We control systematic shifts at the $10^{-14}$ level and perform absolute frequency measurements at the $10^{-13}$ level, limited by GPS-based time transfer infrastructure. We discuss prospects to use strontium isotopologues to place improved constraints on new mass-dependent forces, including possible pathways toward the production of ultracold $^{86}$Sr$_2$ and $^{84}$Sr$_2$ dimers and spectroscopy of clock lines in these species.
Presenter name | Emily Tiberi |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |