Description
Ultracold atoms provide a unique playground for exploring many-body phenomena emerging in strongly correlated systems, owing to an exceptional control over Hamiltonians, their long coherence times, and recently established single-atom microscopy techniques. Here, I will report on the ongoing development of a new atom experimental apparatus in Trieste, aiming to control and detect ytterbium atoms at the single-particle level. Ytterbium presents several features which make it ideal to investigate open questions in problems based on quantum impurity systems. Manipulating the external and internal degrees of freedom of individual atoms by optical tweezer microtraps, and exploiting the precise toolbox of two-electron-atom clock spectroscopy, we aim at coherently manipulating individual, localized impurities interacting with a many-particle medium, triggering and observing their dynamics with interferometric techniques. This will allow to shed light on important questions, such as the ultrafast response and the formation of Kondo resonances in Fermi systems, as well as the competition between quantum dephasing and thermal decoherence therein.
Presenter name | Francesco Scazza |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |