Description
Programming irreversible dynamical rules of cellular automata into non-unitary interactions of quantum systems appears to be a promising route to studying novel collective effects. Considering a master-equation embedding of classical cellular automata, we first investigate the unexplored area of computability aspects of Markovian quantum dynamics. We introduce a novel dynamical class of open quantum many-body systems that allows studying the interplay between computational properties and quantum effects. Strikingly, we demonstrate that computational unpredictability can coexist with quantum entanglement and that it can be studied within present experiments. Next, we present a quantum version of a probabilistic majority-voting cellular automaton to address a long-standing controversy about the existence and limits of bistable behavior in the stationary states of open quantum systems. We find the first instance of genuine bistability in such systems which is driven by the breaking of detailed balance in the non-equilibrium steady state.
Presenter name | Javad Kazemi |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |