Jul 17 – 22, 2022
Royal Conservatory of Music, Toronto
America/Toronto timezone

A novel trapped-ion quantum computer using optical tweezers and electric fields

Jul 19, 2022, 5:00 PM
1h 30m
Hart House (Hart House)

Hart House

Hart House

7 Hart House Cir, Toronto, ON M5S 3H3
Poster presentation Trapped ions, Rydberg atoms, and cold plasmas Poster session


Trapped-ions are one of the most mature platforms for quantum computation and quantum simulation. In trapped-ion quantum simulators the spin-spin interactions are mediated by the collective motion of the ions in the crystal (phonons). We show that additional optical tweezer potentials can be used to engineer the phonon spectrum, and thus tune the interactions and connectivity of the ion qubits beyond the power-law interactions accessible in current setups [1].

Moreover, we use optical tweezers to create two new scalable architectures for trapped-ion quantum computing. Neither scheme relies on ground state cooling or the Lamb-Dicke approximation. In the first we use a combination of optical tweezers delivering qubit state-dependent local potentials with an oscillating electric field [2]. Since the electric field allows for long-range qubit-qubit interactions mediated by the center-of-mass motion of the ion crystal alone, it is inherently scalable to large ion crystals. In the second scheme, the strong curvature of the light field of the tightly focused tweezer creates strong polarization gradients that lead to qubit-state dependent forces on the ion (optical Magnus effect [3]). We show that these may be used to implement quantum logic gates on pairs of ion qubits in a crystal [4].

[1] Phys. Rev. A 104, 013302 (2021)
[2] Phys. Rev. Lett. 127, 260502 (2021)
[3] Phys. Rev. Lett. 125, 233201 (2020)
[4] In preparation.

Presenter name Arghavan Safavi-Naini
How will you attend ICAP-27? I am planning on in-person attendance

Primary authors

Arghavan Safavi-Naini (Universiteit van Amsterdam, QuSoft) Mr Liam Bond (Universiteit van Amsterdam) Mr Matteo Mazzanti (Universiteit van Amsterdam) Dr Rene Gerritsma (Universiteit van Amsterdam) Dr Rima Schussler (Universiteit van Amsterdam) Dr Robert Spreeuw (Universiteit van Amsterdam)

Presentation materials

There are no materials yet.