Description
In quantum information and computation, very high fidelity of gate operations is required. Measuring tiny gate errors with high accuracy is a difficult task, which is traditionally done by randomized benchmarking.
In this work we present a new method which allows to determine the gate errors of Raman qubits, in which the qubit states are coupled in a Raman transition via another state, thereby forming a three-state chainwise-connected system. The method is based on the repetition of the same gate sufficiently many times and thereby amplifying the tiny error to easily measurable sufficiently large values.
In order to deduce the gate error from the amplified error, analytic connections between the single-gate and multi-gate propagators are derived for three-state Raman systems with two types of symmetries:
Majorana and Morris-Shore. We extend these connections to arbitrary dimensions which paves the path toward tomography of qudits.
Presenter name | Stancho G. Stanchev |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |