Description
Cold Atom-based technology promises a new generation of navigation systems potentially suitable for Global Navigation Satellite System-denied environments. However, despite the promise of superior inertial navigation capabilities, a correct identification and quantification of the errors must be carried out to assess what and how system parameters affect the sensor performance. In this context, sensitivity function represents a theoretical tool that allows to quantify the output of a Cold Atom-based Inertial Sensor in terms of scale factor, bias, and noise. As a result of time-dependent perturbation theory, the sensitivity function can be used to link quantum optimal control and Bloch sphere picture, thus enabling the design of tailored Raman beam-splitter pulses resilient to phase dispersion errors.
Presenter name | Nikolaos Dedes |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |