Description
Understanding and tuning light-matter interactions at the level of single quanta is essential for numerous applications in quantum science. Such quantum control seeks to increase the small interaction cross section between single atoms and single photons. Exploiting cooperative response of subwavelength atomic arrays allows for realizing strong light-matter coupling even down to the level of single photons. Here, we control the optical response of an atomically thin mirror using a single ancilla atom excited to a Rydberg state, that is, we use a single atom to control light at the single-photon level. The switching behavior is controlled by admixing a small Rydberg amplitude to the atomic mirror and therefore inducing strong dipolar Rydberg interactions with the ancilla. Driving coherent excitations of the ancilla atom, we demonstrate coherent control over the degree of transmission and reflection. Finally, increasing the mirror size directly reveals a spatial effective “switching” area around the ancilla. Our results pave the way towards novel quantum metasurfaces, the creation of controlled atom-photon entanglement and deterministically engineering quantum states of light.
Presenter name | Kritsana Srakaew |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |