Speaker
Description
Optical tweezer arrays of Alkaline earth-like atoms are promising for applications in quantum information and metrology. Here, we describe a tweezer platform for trapping and manipulating arrays of $^{171}$Yb atoms [1]. We demonstrate favorable qubit properties of the nuclear spin $I=1/2$, including seconds-scale coherence times and sub-microsecond single-qubit gates. We further show that single $^{171}$Yb atoms can be loaded with $>90$% efficiency into each tweezer, and we employ Raman sideband cooling to prepare atoms in the motional ground states of the tweezers. Lastly, we present recent progress, utilizing $^3$P$_0$ clock and Rydberg state control, towards the realization of mid-circuit measurement and two-qubit Rydberg gates.
[1] Jenkins, A., Lis, J. W., Senoo, A., McGrew, W. F., and Kaufman, A. M. (2021). Ytterbium nuclear-spin qubits in an optical tweezer array. arXiV:2112.06732
Presenter name | Alec Jenkins |
---|