Description
Time crystals are classified as discrete or continuous depending on whether they spontaneously break discrete or continuous time translation symmetry. While discrete time crystals have been extensively studied in periodically driven systems since their recent discovery, the experimental realisation of a continuous time crystal [1,2] is still pending. We report the observation of a limit cycle phase in a continuously pumped dissipative atom-cavity system [3], which is characterized by emergent oscillations in the intracavity photon number. We observe that the phase of this oscillation is random for different realisations, and hence this dynamical manybody state breaks continuous time translation symmetry spontaneously. The observed robustness of the limit cycles against temporal perturbations confirms the realisation of a continuous time crystal.
References
[1] F. Piazza and H. Ritsch,
Self-Ordered Limit Cycles, Chaos, and Phase Slippage with a Superfluid
inside an Optical Resonator,
PRL, 115, 163601 (2015).
[2] H. Keßler, J. G. Cosme, M. Hemmerling, L. Mathey, and A. Hemmerich,
Emergent limit cycles and time crystal dynamics in an atom-cavity system,
PRA, 99(5), 053605 (2019).
[3] P. Kongkhambut, J. Skulte, L. Mathey, J. G. Cosme, A. Hemmerich, and H.
Keßler, Observation of a continuous time crystal,
arXiv:2202.06980 (2022).
Presenter name | Hans Keßler |
---|