Description
Atom interferometers are sensitive to the signatures of gravitational waves, ultra-light dark matter and other fundamental physics phenomena. The development of this new class of quantum detector will complement traditional detection methods and extend measurement capabilities.
The Atom Interferometer Observatory and Network (AION) [1] is a planned series of atom interferometers operating on the strontium clock transition in a gradiometer configuration. The baseline of terrestrial devices, corresponding to the separation between interferometers in the differential measurement, will increase from 10 m to 1 km. Current work focusses on developing the cold atom technologies to support the detection goals, including transport and cooling of the atom clouds, state preparation and large momentum transfer techniques, and design of the 10 m device. This poster outlines the scientific goals, experimental implementation and recent progress of the AION detector with a focus on the work on atom transport and cooling being carried out at the University of Cambridge.
This poster is presented on behalf of the AION consortium.
[1] L. Badurina et al. “AION: An Atom Interferometer Observatory and Network”, Journal of Cosmology and Astroparticle Physics 5, 011 (2020).
Presenter name | Tiffany Harte |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |