Description
The large asymmetry between matter and antimatter in the Universe is a mystery. The formation of this extra matter requires charge parity (CP) violation beyond that contained in the standard model, and therefore points towards new physics [1]. The electron’s electric dipole moment (eEDM) is sensitive to this new physics. Precision measurement of the eEDM tests physics beyond the Standard Model and will expand our understanding of the fundamental principles of nature. We aim to improve the precision of the eEDM measurement by 3 orders of magnitude using an array of ultracold ytterbium monofluoride (YbF) molecules held in an optical lattice, measuring an eEDM on the order of 10$^{-32}$ e cm [2].
We produce a beam of YbF using a two stage cryogenic buffer gas source cooled to 2 K. In this source, YbF is formed by laser ablation of an ytterbium target in the presence of sulphur hexafluoride (SF6), and is then entrained in a flow of cold helium gas. We plan to decelerate these molecules using laser slowing, capture them in a magneto-optical trap, cool them to a few microkelvin and then load them into an optical lattice where spin coherence times of several seconds seem feasible. We will present the progress made towards generating a slow beam, initial laser slowing experiments and our plans for the future.
[1] Sakharov A D 1991 Sov. Phys. Usp. 34 392–3
[2] N J Fitch et al 2021 Quantum Sci. Technol. 6 014006
Presenter name | Andrew D White |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |