Speaker
Description
We report on the creation of sodium-cesium (NaCs) molecules in their rovibrational ground state [1], assembled from ultracold clouds of Na and Cs atoms [2,3]. Via one- and two-photon spectroscopy we have identified a pathway that allows us to produce the first ultracold ensembles of NaCs ground state molecules via stimulated Raman adiabatic passage (STIRAP). In the ground state we explore the rotational structure. We demonstrate strong Rabi coupling on the microwave transition between the ground and first excited rotational state, allowing us to coherently control the rotational state on extremely fast time scales with pi-pulse times on the scale of 10 nanoseconds. The long-lived rotational states can be used as qubits or to shield the molecules from two-body loss. We show preliminary results on microwave shielding of the molecules, along with early work on direct evaporation of NaCs. Progress in this direction may allow cooling towards quantum degeneracy, potentially opening the door towards a strongly dipolar Bose-Einstein condensate of ground state molecules.
[1] I. Stevenson et al., arXiv:2206.00652 (2022)
[2] C. Warner et al., Phys. Rev. A 104, 033302 (2021)
[3] A. Z. Lam et al., Phys. Rev. Res. 4, L022019 (2022)
Presenter name | Ian Stevenson |
---|---|
How will you attend ICAP-27? | I am planning on in-person attendance |